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Abstract In this paper, we prove the existence of solutions for two kinds of nonlinear
fractional differential systems with coupled nonlocal initial conditions, the approach is
based on the fixed point theorem of Perov and the choice of suitable norm for vectors.
Further, Hyers—Ulam stability problems are discussed for these two kinds of nonlinear
fractional systems. Two examples are presented to illustrate the theory.
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1 Introduction

Fractional differential equations have recently proved to be valuable tools in the mod-
eling of many phenomena in various fields of science and engineering. Indeed, we
can find numerous applications in viscoelasticity, electrochemistry, control, porous
media, electromagnetic, etc. There has been significant development in fractional dif-
ferential equations in recent years; One can see the monographs of Podlubny [1], V.
Lakshmikantham et al. [2] Miller and Ross [3], Kilbas [4] and the research papers
of Agarwal [5,6], Ahmad and Nieto [7], Deng et al. [8], Bai [9], Wang et al. [10],
Zhou et al. [11] and Zhao [12]. In these previous works, Chauchy problems, nonlocal
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problems, impulsive problems, stability problems and boundary value problems of all
kinds of fractional differential equations are discussed.

Nonlocal problems occurred naturally when modelling physical problems, Non-
local problems (such as: nonlocal initial problems [12,14,16], nonlocal boundary
problems [13,15]) for several classes of differential equations and systems were exten-
sively discussed in literature by various methods. This paper is motivated by the works
[12,17,18] in which systems with coupled nonlocal conditions and Hyers—Ulams sta-
bility of differential equations have been discussed, we intend to study and develop
some existence and Hyers—Ulam stability results given in [11,19-23].

In this paper, we discuss two kinds of fractional order nonlinear differential systems
as following

Diui(t) = fi(t.ur(®), uz(t), ..., un (1)),
Douz(t) = fo(t, ur(0), ua(1), . un(t)), (LD

Dgun(t) = fu(t,ur(0), us(t), ..., un(1)),

for a.e.r € [0, 1], subject to the coupled nonlocal conditions
u1(0) = virlur] +viplua] + - - + viplunl,

uz(O) = vorlug] + voluzl + - - - + voulu,l, (1.2)

un(o) = vprlur] + vealuz] + - - - + vanluy].

And
D§(D + Mui(t) = fi(t, ur(®), uz(t), ..., un(t)),

DY(D + Nuz(t) = fa(t, ur (@), uz (1), ..., un (1)), 13

DY(D + Nun(t) = fult,ur(t), ua(t), ..., un(0),
for a.e.r € [0, 1], subject to the coupled nonlocal conditions
u1(0) = 0,u2(0) =0,...,u,(0)=0

' (0) = vip[ug] + violua] + - - + vinlun],
M,Q(O) = vy lur] +voluz]l + - - -+ voulu,l, (L.4)

1, (0) = Va1 [u1] + vpaluzl + - - - + vunlun].

respectively. Here, D is Caputo fractional derivative of order 0 < o < 1, f; : [0, 1] x
R" — R(@ =1,2,...,n) are Li-Carath¢odary functions,v;; : C[0,1] — R,i, j =
1,2, ..., n are linear and continuous functions and A > 0, A € R is a constant.

2 Preliminaries

and theorems that shall be used in remainder
> and Ry = [0, +00).
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Definition 2.1 ([1,4]) The fractional integral operator of order « > 0 of function
f € L(Ry) is defined as

1

I(()xf(t)=Ta)

t
/(t — ) F(s)ds 2.1
0

where I'(+) is the Euler gamma function.

Definition 2.2 ([1]) The Caputo fractional derivative order @ > 0,n — 1 <« < nis
defined as

t
N p— / (t = )" £ (5)ds 22)
I'(n—a) Jo

where the function f(¢) has absolutely continuous derivatives up to order n — 1.

Properties 2.3 ([4]) For o, B > 0 and f a suitable function we have

Gy 1218 fo) = 18P £ (0);
(i) IZCDYf(t) = f(t) — f(@), O<a<l;
(i) CDXCDE F(1) # DL F ).

Definition 2.4 ([7]) Let X be a nonempty set. A vector-valued metric on X is a map
d: X x X — R,n € N with the following properties

1) d(u,v) >0, Vu, veX; du,v) =0ifand only if u = v.
(i) d(u,v) =d@,u), Yu, velX.
(i) d(u,v) <d(w,w) +d(w,v), Yu, v, we X.

The pair (X, d) is called a generalized metric space for such a space convergence and
completeness are similar to those in usual metric space.

Definition 2.5 ([11]) Let (X, d) be generalized metric space, the map 7 : X —
X is called a contraction if there exists a convergnet to zero matrix M such that
d(T (u), T(v)) < Md(u,v),u,v € X.Inthis case, M is called T's Lipschitz matrix.

Theorem 2.6 ([11] Perov) Let M be a square matrix with nonnegative elements. The
following are equivalent

(a) M is convergent to zero.
(b) the eigenvalues of M are located inside the unix disc of complex plane.
(c) I — M is nonsingular and (I — M)~ has nonnegative elements.

Theorem 2.7 ([11]) Let (X, d) be a complete generalized metric space T : X — X
a contractive map with a Lipschitz matrix M. Then T has a unique fixed point u* and
each ug € X, one has

~d(uo, T(uo)), Vk e N.

Sl LN Zy I—i.lbl 2 g




496 X. Lietal.

Theorem 2.8 ([14] Holder inequality) Assume that o, p > 1 and 1 + % =1, if
I,m e LP(J,R), thenfor1 < p < o0o,lm € L'(J, R) and

limllipiy = Lo sllmlizes. (2.3)

Let C(J, X) be the Banach space of continuous functions x(t) with x € X for
teJ =10,1]and

T
Ixllc,xy = Ulxdll lx2ll, . lxn D

where ||xillc,x) = majx xi(@®)],i = 1,2,...,n. We denote by Mn x n the sets of
te

all square matrices of order n, and C[J, My, x,] the Banach space with continuous
elements m;j(t) : J — R, 1 <i, j <n, and for My, € C[J, M, «n] with the norm

IMlcux) = (lmijD1<i,j<n, (2.4)

where ||m;j|| = ItI}EaJ)((|mij(f)|)-

3 Existence and Hyers—Ulam stability results of system (1.1)-(1.2)

The problems (1.1), (1.2) can be rewritten in the vector form

D&u(t) = F(t, u(t)),
[u(%) = v[ul. G-

where u(t) = (ul(t),uz(t),...,un(t))T, F(t,u) = (fi(t.u@®), fo(t,u@®), ...,
Fu(t @) andvlu] = ilul, valul, ..., va[u])” here vi[u] = viy[ur]+vialua ]+
<ot viglug].

Let us integrate the system (3.1) over [0, 1],and obtain

ut) = C + % /Ot(t — ) F (s, u(s))ds, (3.2)

where C = (Cy,Co, ..., C,)' e R" is a vector. Secondly, the initial condition
1(0) = v[u] and linearity of v give

t
C = v|:C + ﬁ /(t - s)"‘_lF(s, u(s))ds]
o (3.3)
_L — s)“‘_lF(s, u(s))ds],
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and

(1 —v[1])C 1"( 5 [/(t — ) F (s, u(s))ds:| (3.4)

Then, assuming that matrix / — v[1] is nonsingular, where [ is the unix of order n,
(3.4) gives

c=(-v)”!

r( ) [/(t—s)“ YF (s, u(s))d }

Therefore, the problem (3.1) is equivalent to the integral type equation

w0 = (1 =ot) ] [ Fa)as)
* e )/(t—S)“ YF (s, u(s))ds 3.5)

in the space C([0, 1], X).
We make the following assumptions

(a) The functions f;(i =1, 2, ...) satisfy Lipschitz conditions of the form

(fi(t, u(®)) — fi(t, w®)| < b ®|ur — wi| + bia()|uz — wo| + - --
i=1,2,...,n, fortel0,1]
(3.6)

+bin(t)|un — Wn|,

for all u, w € X, and there exists 0 < a; < «,a1 € R such that b;;(t) €
L(Xl ((07 1); R+)7 1 S is] S n.
Using vector notations we can rewrite the condition (3.6) as follows

| £t u@®) — f(t,w®)|| < B®)||u —w| (3.7)
where B(t) = (b;; (t))lfi’jin, and B(t) € L, ((0, 1); B(1) € Myyy).
(b) The matrix (/ — v[1]) is nonsingular.

Theorem 3.1 Assume f; : [0, 1]xR" - R, (i =1,2,...,n)are Ll—Carathéodory
Sfunctions and satisfy the assumption (a), v;j : C[0,1] — R,i,j =1,2,...,n are
linear and continuous functions and satisfy the assumption. (b) If the spectral radius
of the matrix

(I —v[1])" ”"” + I’"B”LL[O,I]’ (3.8)
@]

1
(o)

unique solution in X.

@ Springer
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Proof The conclusion will follow once we have shown that the operator T defined by

t
Tu=(I- v[l])_1 F(l )v[/ (t— s)“_lF(s, u(s))ds]

* e )/(t $)*VF (s, u(s))ds 3.9)

is contractively with respect to a suitable vector norm on C ([O, 11, X )
For any functions u, w € C([0, 1], X), we have

|(Tu) () — (Tw) ()]
<1 =vr) " o [ = (F F ))d)||
< \( —[ ]) ) v(/( —) ( (s,u(s))— (s,w(s) s
a—1
F( )/(t s) ||F(s u(s)) (s w(s))”ds

1

Tt (1 —v[1]) " |v] —I—I|/(t ) B()||uls) — w(s)|ds
1 _

—— (1 =1 v + 1] / t —)* ' B(s)ds|u —w], (3.10)

F( ) 0

Since assumption (a) and Theorem 2.8, we get

(T = Tw)(0)] < - )|(I—v[1]) H ||+1|(/ (t — )15 ds) 7

([ @ o)as) -l

1
<m0 M Bl -l
1
< sl =)™ o+ 1181,y =l
3.11)

Finally, (3.11) gives
1
[ru— 7wl = s (= vt) ol (18] el G12)

Since by hypothesis, the spectral radius of the matrix ﬁl(l —v[ID Y| +
11||B] ~is less than 1. Thus T is contractive and the conclusion follows from
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We consider system (3.1) and the following inequations

|Dgi(r) — F(r,u(1))| < 8(0)e
Lo 2 G
where 8(t) : (0,1) - Ry ande = (e1,€2,...,€,)7, € >0,i=1,2,....,n. 0O

Definition 3.2 System (3.1) is Hyers—Ulam stable with respect to System (3.13), if
there exists Ay > 0, Ay € My, (Ry) such that

Ja—al <ase.
for all # € J where u is any the solution of (3.13), and u of the solution for system
(3.1).

Theorem 3.3 Assume f; : [0,1]xR" — R, (i =1,2,...,n)are Ll-Carathéodory
Sfunctions and satisfy the assumption (a), v;; : C[0,1] — R,i,j =1,2,--- ,n are
linear and continuous functions and satisfy the assumption. (b) If the spectral radius
of the matrix

1
e I L RV . (3.14)

is less than 1, and in system (3.13) sup §(t) < 1. Then,the system (3.1) is Hyers—
te(0,1)
Ulam stable with respect to system (3.13).

Proof Let h(t) = Dgu(t) — F(t, u(t)), consider the system

[Dgﬁ(t) = F(t,i(t)) + h(t)

u(0) = vlul. (3.15)

Similarly to the system in Theorem 3.1, system (3.15) is equivalent to the following
integral equation in C"[0, 1]

t
() = (I - 1;[1])‘1F(1 )v[/(l —s)“—lF(s,ﬁ(s))ds}
+(I—v[1]) r( ) [/(z—s)“ 1h(s)ds]

F(w)/ (t — ) F (s, a(s))ds + m/ (t — ) h(s)ds.

Now, we define the operator T as following

_oa—1
F() |:/ (t—19) F(s u(s)) ]
1 a—1 -
+%/O(t—s) F(s,u(s))ds—l—H(t), (3.16)

(Tay @) = (I —v[1])”"

@ Springer




500 X.Lietal

H@t) = (I - v[l])“ F(l )v|:/t(t - s)“—lh(s)ds]
+ i [ hsras. 3.17)
By consequence, we obtain
|Ta — Tw| = |Ta—Tw|.

Then the existence of a solution of (3.1) implies the existence of a solution to (3.15),
it follows from Theorem 3.1 that 7' is a contraction. So, there is a unique fixed point
u of T, and respectively u of T.

Since tr € [0, 1]and sup &(r) < 1, we get
te(0,1)

|H| = max \H@®| = |(1 - 1)[1])‘1

t
v[/ (t — s)"‘_lh(s)ds]
0

a—1 1 _ -1
i [a= 9 s < sl = o)™ ol +

1
= mw—”[l]) vl + 1.

Then we obtain

|a—al = |7@ - 7] = |T@ + HE) - T@)|
<|r@-1@|+|H®|

1 - .
e LU U [ I |
1
+1‘*( +1)|( —1)[1]) ||1)”+I|8.

Note that 7 — ﬁ((l —v[ID '+ DB 1 is invertible and its inverse is a
L*1[0,1]

nonnegative matrix since p(%((] —v[ID~t+ I) ||B|| o 1]) < 1, then we have

Ja—al = (1= g 0 o)l 211y )
1 _
e [T 1 R 1Y
< v (1 gl ) Wl )
T T(a+1) T(a) ’ L0,

(3.18)
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-1 B -1
Lty = reter (1= gl —vt) ™+ 1l1B] g )0 o+
and the condition sup 4(¢) < 1, from (3.18) we obtain
1€(0,1)

bl

Ji—al =Ase.
This complete the proof. O
Example 3.4 Consider the nonlocal problem
[ 1
Dgui(t) = sinuy +uz + g1(1),
D3 ust) = costur = uz) + 2(0)

1 2
up(0) = Z/o (u1(s) + ua(s))ds,

%
ur(0) = %/0 (1(5) + ua(s))ds,

where ¢t € [0, 1], gi(t) € L1(0, 1), i = 1,2. We have

1(11) ( )_1 1(71)
v[l] = 3 , (I —v[1] =
\11 °\17
N =) r=vE
B= ) Vi =g 5 r(_)= .
(11) 8(1 ) ’

1 _ -1 1 11
0= sl =yl aiel y == (1)

and p1(Q) =0 <1, 02(0Q) = \/LE < 1. From Theorem 3.1, the problem (3.19) has
a unique solution « on [0, 1]. Furthermore, the solution u is Hyers—Ulam stable with
respect to the following system

(3.19)

—_

Then

D=

|Dq121(t) — sinity — iy — g1(1)| < 8(0)ey,
|Dg i (1) — cos(iiy — i2) — 0] <sMe,

i1(0) = %1/07 (@1(5) + iia(s))ds.

1

- 1 7 - -
u2(0) = 1/0 (it1(s) + ita(s))ds,

@ Springer
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4 Existence and Hyers—Ulam stability results of system(1.3)-(1.4)
The problems (1.3)—(1.4) can be rewritten in the vector form

D§(D + Mu(r) = F(r,u(1)),
u(0)=0 4.1)
u'(0) = v[ul.

where the functions u, F, v are defined the same as in system(3.1).
We denote by |u|c(q,5) the usual max norm on Cla, b], foreach 6 > 0, by |u|cy[a,b]
the equivalent form

leatas = [V u®] ¢y = max (" um), (4-2)

we will use the vector-valued norms |u|c,[q,p] in this section.
Let us make the following assumption
(c¢) the matrix I — 21 — e M s nonsingular over [0, 1].

Lemma 4.1 [f the assumption (c) is satisfied, then the system (4.1) is equivalent to
the following integral equation

(I =2l —e )7 (1 — )
vV

u(®) = T(@)h
t r
« [/ e_x(t—r)/ (r _ s)a_lF(S, u(s))dsdr:|
0 0
t r
n F(la) /0‘ e—)h(t—r)/o (r _ S)a_lF<s’ u(s))dsdr. (43)

Proof Applying the operator /¢ on both sides of the first equation of system (4.1), we
get

(0 +2u) = o+ s | (¢ =7 (s u(s))ds.

which can be rewritten as

t
D(e)"u(t)) = Coe + %/{) (t — s)"‘_lF(s, u(s))dse“.

Integrating from O to 7,we get

Co(l —e™™
u(t) = ¥ +Cre ™M

! r

(r —)* "' F(s, u(s))dsdr.
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Using the initial conditions in (4.1), we find C; = 0 and

Co = u (0) = v[u]

Y ! r
:v[Co(l xe )}+V[F(1a)/oe_w_r)/0 (r_s)a—lp(s,u(s))dsdr]

t r
:Tv[l—e_)‘t]+v|:r(1a)/0 e_)‘(’_r)/o (r—s)"_lF(s,u(s))dsdri|.

(4.4)

Since the matrix 7 — 2~ 'v[1 — ¢7*'] is nonsingular over [0, 1], we obtain

—1 t r
Co=ﬁ(1—)ﬁlv[1—e_“]) v|:/0 e_m_r)/o (r—s)“_lF(s,u(s))dsdr:|.

(4.5)

Substituting these values of C; = 0, and Cy in (4.5), we get (4.3). This completes
the proof. O

Theorem 4.2 Assume f; : [0,1]x R" — R, (i =1,2,...,n)are Ll-Carathéodory
functions and satisfy the assumption (a) with B(t) € L([0, 1]; Myxpn), vij
C[0,1] — R,i,j = 1,2,...,n are linear and continuous functions and satisfy
the assumption (c). If the spectral radius of the matrix

82)‘—1 ) el ‘
— I+ (AT =[]l — B , 4.6
et e )l 69

is less than 1, then the problem (4.1) has a unique solution in X.
Proof Define the operator ¢ : C([0, 1], X) — C([0, 1], X) by

(1) 0

(pu)(1) = T ™ v

t r
« [/ e—k(t—r)/ (r _ S)Ol—lF(S’ u(s))der:I
0 0
t r
+ r(la) /0 M /0 (r =) F (s, u()dsdr. 47

we want to proof the operator ¢u has a fixed point.
We recall that (see [20])

'AT%eM T (a, —A(r — 5),0),

@ Springer
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where

0
(e, —h(t —u),0) = (, =A(t — ) — T'(a, 0) = / re e dr.
—A(t—u)

Hence we obtain

t r
ﬁ/o e /0 (r = )" F (5, u(s))dsdr

t t
= %/0 F(s,u(s))/s e M — ) Ndrds

(—l)a_l)\._ae_)“t

t
I @) /0 F(s, u(s))e/\sr(a, —A(t —5),0)ds. (4.8)

For any function u, w € C([0, 1], X), and 1 € [0, 1], we have

P -
|(Gu)(t) — (pw)(1)| < [+ (7 =it =e ) 7 o] | o

~ I'(w)

t
[ (e =2 = 9.0 F(s.u60) = Fls. w) fas
0

-

< )|I + (== e_lt])_1||"|||ze[o,1]

o

r

/t T(o, —A(t — ), 0)B(s) || €™ (u(s) — w(s))|ds
0

-

a
=

_ a1
F(oe)|1+(k =it =) 0] epony

t
/0 F(Ot, —A(t =), O)B(s)ds ” (u — w)||CA[0,1]

—o

- a1
<t + 0T =) T g
t % P %
(/ (. —A(t —s),O)ds) (/ Bz(s)ds)
0 0
x ” (u —w) ||CA[O,1]’ 4.9)

where [[(u — w)|lcy,, 1s the vector norm defined as (4.2). Since

0 2
Fz(a, —A(t — ), O) = (/ r"‘_le_'dr)

—A(t—s)
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At—s) 2
< (ek(t—s)/ ra—ldr)
0

1 2
- e”(”)(a,\“(t —s)“) ) (4.10)
From (4.9) and (4.10), we obtain that
Ve 1 _
@) (0) = (pw)(1)] < mU + (== e ) o] oy
|B] L,[0.1] e = w) ”cm]]' “.1D)

Therefore,the Perov fixed point theorem implies that coupled system (4.1) has a
unique solution in X. And we complete the proof. O

Definition 4.3 The system (4.1) is called Hyers—Ulam stable with respect to the fol-
lowing system

|DZ(D + Mia(t) — F(t,a(t))] < 8(t)e,
i(0) =0, (4.12)
i’ (0) = v[al,

here 6(¢) : (0,1) — R+~and8 = (€1, €2, ...,en)T, € >0,(=1,2,...,n),if there
exist a constant matrix Ay € My,», (Ry) such that for the solution u of system (4.1)
and each solution # of system (4.12) satisfy

Ju—il = Aye

Theorem 4.4 Assume f; : [0,1]x R" — R, (i =1,2,...,n)are Ll-Carathéodory
functions and satisfy the assumption (a) with B(t) € Lg([O, 1];M,,X,,), Vij
C[0,1] — R,i,j = 1,2,...,n are linear and continuous functions and satisfy
the assumption (c). If the spectral radius of the matrix

Vet —1

.
mV + (1_11 —v[1 —e_M]) Il Bl 00 @13

is less than 1, and sup 8(t) < 1, then the system (4.1) is Ulam—Hyers stable with
te(0,1)
respect to system (4.12).
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Proof Let the operator ¢ as

_a—1 N ' r
(q?ﬁ)(t)=(1 A V[l ¢ ]) (1 ¢ )v[/oe—x(t—r)/o(r_s)a—l

T (@)A
t r
F(s, ﬁ(s))dsdr +/ e_)‘(’_r)/ (r— s)“_lfz(s)dsdr]
0 0

t r

t r
+L / e M=) / r — )% Vh(s)dsdr, 4.14)
I'(a) Jo 0

where
ﬁ(t) = Dy (D + Mi(r) — F(t, ﬁ(t)), t €0, 1]. (4.15)

If we denote

5 _(1_ o[l - _M]) —e) [ " oaen [ am17 ]
H(t) v /Oe /O(r ) h(s)dsdr

I'(w)A
1 t r ~
+=— / e M=) / (r —)* Vh(s)dsdr. (4.16)
(o) Jo 0
. . .. \/;_ -1 _a
Usmgthewuhthecondltlonp(\ﬁer(aﬂ)|I+( I—v[1- ’]) v |||t€[0y1]

|B| Lyo.1) < 1,and Theorem 2.6 (c), with similar thinking in Theorem 3.3, we obtain

-1

A 2] B oA\t
Ji =l = (1= e (vl =) ol B0
(I—)L_lv[l—e_“]_lx/e”‘__l -
i il

—1

I= \/ﬂF(a+1)|I ()‘_11_”[1_‘3_“]) ||”|||[0,1]||B||L2[0,1])

(I A 1 [I—E_M] /
T(a + 1)v22

—1

4.17)

- e —1 _ =1 -
Ap= (I J_F(a - 1)| + (T =1 =e7M]) ||"|||[0,1]||B||L2[0,1])
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Then we have
la—ul < Aye.
By the Definition 4.3, the solution u of (4.1) is Hyers—Ulam stable with respect to
system (4.12). The proof is completed. O

Example 4.5 Consider the nonlocal problem

[ 1
D (D + Duy (1) = ésinul + ﬁtan_luz + g1(1),
1
DE (D + Dua(t) = 5cos(uy — uz) + g2(1),
u1(0) = 0, u(0) =0, (4.18)
up (0) = u1(3) —us(d),
| u5(0) = u1 (3) + ua (D),

where t € [0, 1], g;(t) € L1(0, 1). We have

Then

0= A (i)
= — —v
200 (a + 1) €0,
V22 —=1) (2e_1 — 26_% +3 27! —26_% +3)

2 m@e Tt —2e t 4 1)\ 207 4207 =1 2e77 42e7 1

LIy

-1
and p1(Q) =0 < 1, pp(Q) = 2% )(«/2(e2—1)

127 (e~ =2~ 3 +1)
4.2, the problem (4.18) has a unique solution « on [0, 1]. Furthermore, by Theorem 4.4,

the solution u is Hyers—Ulam stable with respect to the following system

< 1. From the result of Theorem

|D0 (D + Day(t) — smul ztan_lﬁg —g1()] <8@)ey,

|D (D + Dita(t) — f5cos (il — iiz) — g2(1)| < 8(t)ea,
u1(0) =0, uz(O) = 0
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wheree; >0, i=1,2, 6(¢):(0,1) > R, sup §() < 1.
te(0,1)
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